Acute leukemias

Lidia Gil Department of Hematology and Bone Marrow Transplantation Poznan University of Medical Sciences

Acute leukemias

- Heterogenous group of hematological malignant diseases with clonal proliferation and accumululation of blast cells in blood, bone marrow and/or other organs
- > The pathogenesis of the disease is multistep and multifactorial
- Etiology is not know
 - Genetic predisposition
 - Irradiation
 - Viruses

• The cure is possible

- Aggressive chemotherapy
- Targeted therapy
- Allogeneic stem cell transplantation

Acute leukemias – clinical picture

General symptoms

Fatique, loss of weight, fever

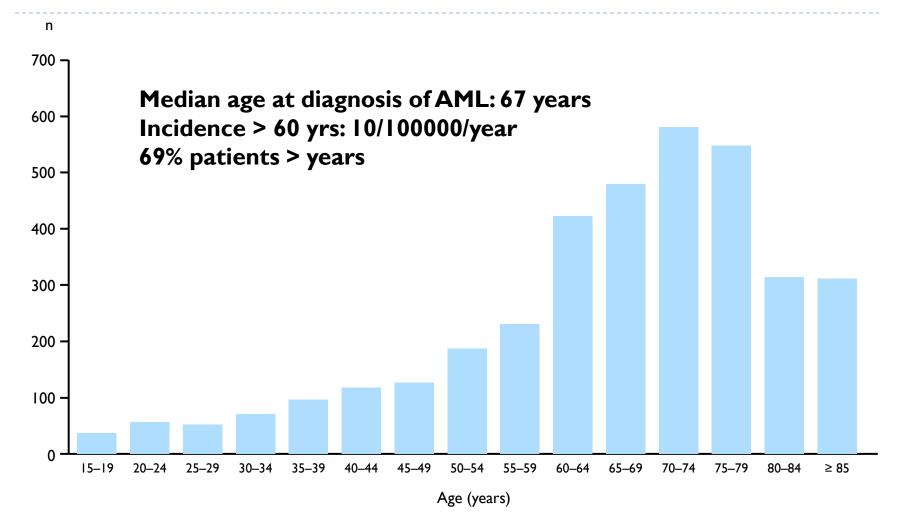
Symptoms of cytopenia

- Anemia: pallor, palpitation, vertigo
- Neutropenia: bacterial or fugal infection
- Thrombocytopenia: bleeding, petechie, ecchymoses

Signs related to organ infiltration

- Hepatosplenomegaly
- Lymphadenopathy

Symptoms of leukostasis


- Respiratory distress
- Altered mental status

Acute myeloid leukemia >85% Myelodysplastic syndrome Acute lymphoblastic leukemia <15%

Definition

- Heterogenous group of diseases characterized by clonal cells that exhibit maturation defect that correspond to stages in hematopoietic differentiation
- Diagnostic criteria
 - Bone marrow blast cells >20%
 - Clonal, recurrence cytogenetic abnormalities t(8;21), inv(16), t(16;16), t(15;17) regardless of blast cell percentage

AML – incidence

AML - diagnosis

Test to establish the diagnosis

- Complete blood count with differential count
- Bone marrow aspiration and biopsy
- Immunophenotyping

• Genetic analysis

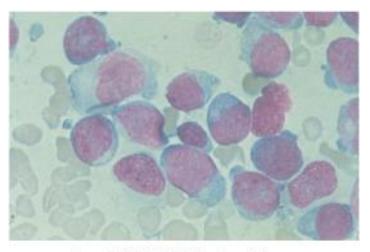
- Cytogenetics
- Screening for gene mutations
- Screening for gene rearrangements

Additional tests/procedures

- Biochemistry, coagulation test, urine analysis
- Viral test
- Chest radiograph, abdominal sonography, ECG, ECHO
- Demographic and medical history with comorbidites analysis
- Detailed family history
- Performance status (WHO)

AML - diagnosis

Complete blood count

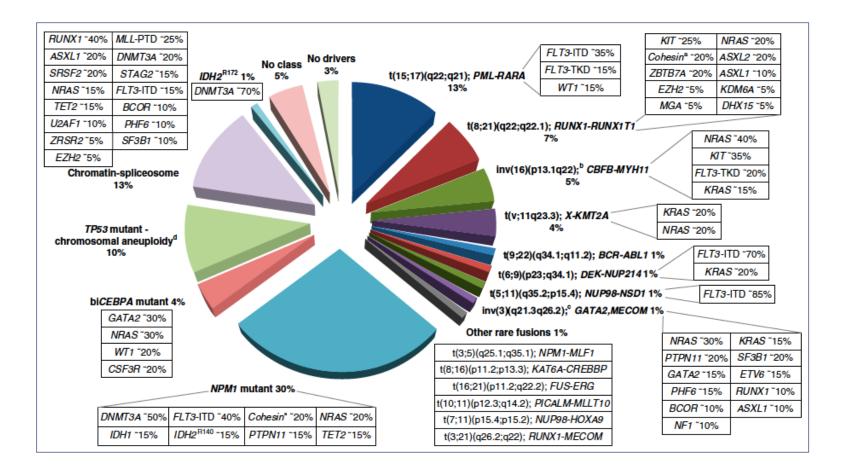

- Anemia
- Thrombocytopenia
- Leukocytosis with neutropenia

Blood smear

Blast cells

Bone marrow aspiration and biopsy

Blast cells > 20%



Copyright 2005 Elsevier Science

AML - immunophenotyping

Expression of cell-surface and cytoplasmic markers		
Diagnosis of AML*	· · · · · · · · · · · · · · · · · · ·	
Precursors†	CD34, CD117, CD33, CD13, HLA-DR	
Granulocytic markers‡	CD65, cytoplasmic MPO	
Monocytic markers§	CD14, CD36, CD64	
Megakaryocytic markersll	CD41 (glycoprotein IIb/IIIa), CD61 (glycoprotein IIIa)	
Erythroid markers	CD235a (glycophorin A), CD36	
Diagnosis of MPAL¶		
Myeloid lineage	MPO (flow cytometry, immunohistochemistry, or cytochemistry) or monocytic differentiation (at least 2 of the following: nonspecific esterase cytochemistry, CD11c, CD14, CD64, lysozyme)	
T-lineage	Strong# cytoplasmic CD3 (with antibodies to CD3 ε chain) or surface CD3	
B-lineage**	Strong# CD19 with at least 1 of the following strongly expressed: cytoplasmic CD79a, cCD22, or CD10 or weak CD19 with at least 2 of the following strongly expressed: CD79a, cCD22, or CD10	

Genetic abnormalities in AML

Dohner et al. Blood 2017

AML classification

AML and related neoplasms	AML and related neoplasms (cont'd)
AML with recurrent genetic abnormalities	Acute myelomonocytic leukemia
AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1	Acute monoblastic/monocytic leukemia
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11	Pure erythroid leukemia#
Acute promyelocytic leukemia with PML-RARA*	Acute megakaryoblastic leukemia
AML with t(9;11)(p21.3;q23.3); MLLT3-KMT2A†	Acute basophilic leukemia
AML with t(6;9)(p23;q34.1); DEK-NUP214	Acute panmyelosis with myelofibrosis
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)	Myeloid sarcoma
AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); RBM15-MKL1‡	Myeloid proliferations related to Down syndrome
Provisional entity: AML with BCR-ABL1	Transient abnormal myelopoiesis
AML with mutated NPM1§	Myeloid leukemia associated with Down
	syndrome
AML with biallelic mutations of CEBPA§	Blastic plasmacytoid dendritic cell neoplasm
Provisional entity: AML with mutated RUNX1	Acute leukemias of ambiguous lineage
AML with myelodysplasia-related changes!	Acute undifferentiated leukemia
Therapy-related myeloid neoplasms¶	MPAL with t(9;22)(q34.1;q11.2); BCR-ABL1**
AML, NOS	MPAL with t(v;11q23.3); KMT2A rearranged
AML with minimal differentiation	MPAL, B/myeloid, NOS
AML without maturation	MPAL, T/myeloid, NOS
AML with maturation	

WHO 2016

AML classification

WHO classification

Classification*

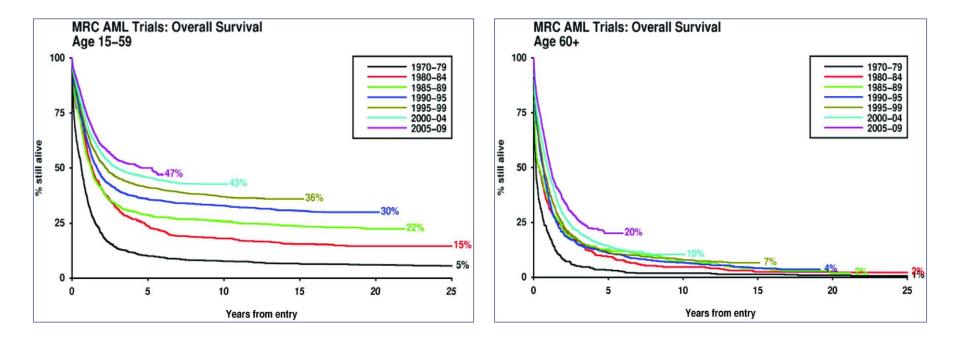
Myeloid neoplasms with germ line predisposition without a preexisting disorder or organ dysfunction AML with germ line CEBPA mutation Myeloid neoplasms with germ line DDX41 mutation† Myeloid neoplasms with germ line predisposition and preexisting platelet disorders Myeloid neoplasms with germ line RUNX1 mutation⁺ Myeloid neoplasms with germ line ANKRD26 mutation† Myeloid neoplasms with germ line ETV6 mutation† Myeloid neoplasms with germ line predisposition and other organ dysfunction Myeloid neoplasms with germ line GATA2 mutation Myeloid neoplasms associated with bone marrow failure syndromes Juvenile myelomonocytic leukemia associated with neurofibromatosis, Noonan syndrome, or Noonan syndrome-like disorders Myeloid neoplasms associated with Noonan syndrome Myeloid neoplasms associated with Down syndromet Guide for molecular genetic diagnostics[‡] Myelodysplastic predisposition/acute leukemia predisposition syndromes CEBPA, DDX41, RUNX1, ANKRD26, ETV6, GATA2, SRP72, 14q32.2 genomic duplication (ATG2B/GSKIP) Cancer predisposition syndromes§ Li Fraumeni syndrome (TP53) Germ line BRCA1/BRCA2 mutations Bone marrow failure syndromes Dyskeratosis congenita (TERC, TERT) Fanconi anemia

AML – risk factors

• General characteristic

- Age
- Secondary AML to MDS or MPN

Cytogenetic factors

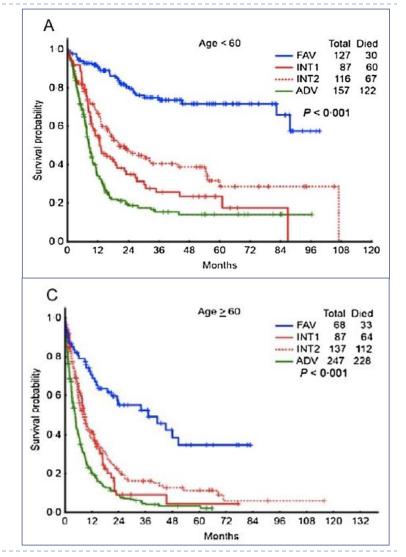

Chromosomal anomalies

Gene mutation

Gene expression

- Multidrug resistance: MRD1; MRP1&2
- WTI gene expression
- BCL-2&Bax
- Topoizomerase II

AML – OS according to age


Burnett et al. Hematology 2012

Cytogenetic abnormalities in AML

Risk category*	Genetic abnormality
Favorable	t(8;21)(q22;q22.1); RUNX1-RUNX1T1
	inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
	Mutated NPM1 without FLT3-ITD or with FLT3-ITD ^{low} †
	Biallelic mutated CEBPA
Intermediate	Mutated NPM1 and FLT3-ITD ^{high} †
	Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} † (without
	adverse-risk genetic lesions)
	t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡
	Cytogenetic abnormalities not classified as favorable or adverse
Adverse	t(6;9)(p23;q34.1); DEK-NUP214
	t(v;11q23.3); KMT2A rearranged
	t(9;22)(q34.1;q11.2); BCR-ABL1
	inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)
	-5 or del(5q); -7; -17/abn(17p)
	Complex karyotype,§ monosomal karyotypell
	Wild-type NPM1 and FLT3-ITD ^{high} †
	Mutated RUNX1¶
	Mutated ASXL1
	Mutated TP53#

Dohner et al. Blood 2017

D

Tamamyan et al CROH 2017

Treatment strategy in AML

Goal of treatment – complete remission

- No blast cell in bone marrow and peripheral blood (MRD-)
- Blood count: normal

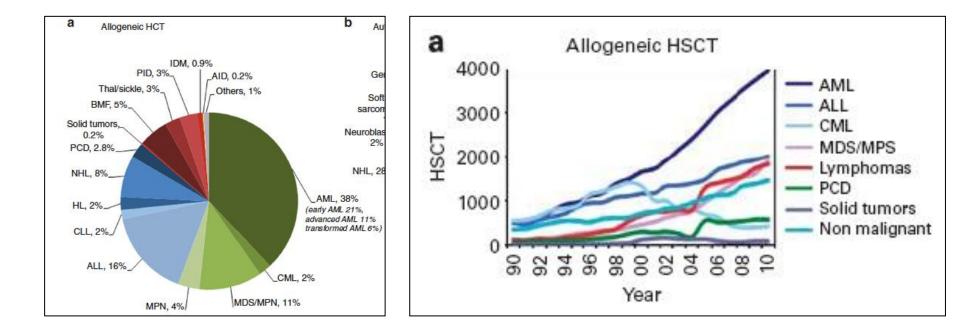
Remission induction therapy

Post-remision therapy

- consolidation
- hematopoietic stem cell transplantation
- Treatment of refractory/relapsed disease
- Treatment of complication

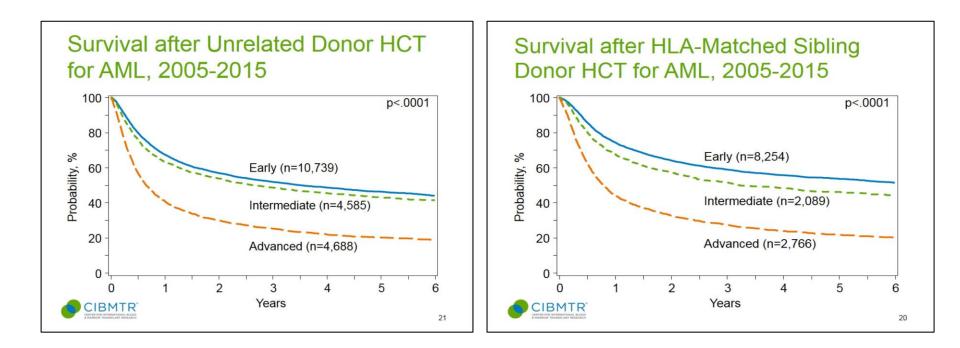
AML treatment

> Patients eligible to intensive chemotherapy: complete remission in 75%


- Induction chemotherapy: daunorubicine + cytarabine (3+7)
 - variants
- Consolidation therapy
 - Favorable risk group: 2-4 cycles of HD-AraC
 - Intermediate risk group: HD-AraC + alloSCT (or 2-4 cycles of HD-AraC or autoSCT)
 - High risk group: HD-AraC + alloSCT

Patients not qualified for intensive chemotherapy

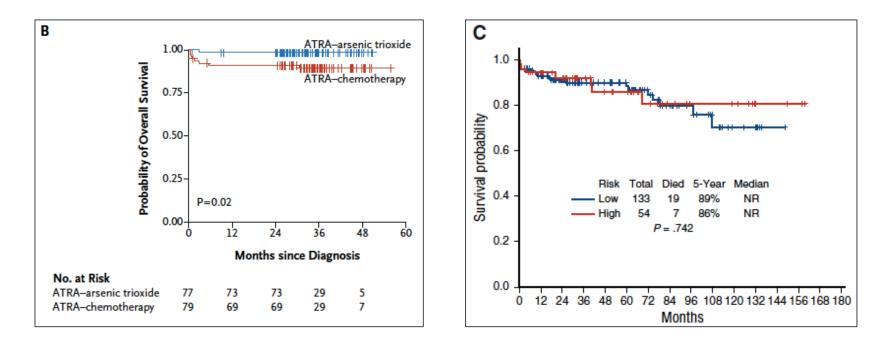
- Azacitidine
- Decitabine
- Low-dose AraC
- Best supportive care


alloSCT in Europe - EBMT

D

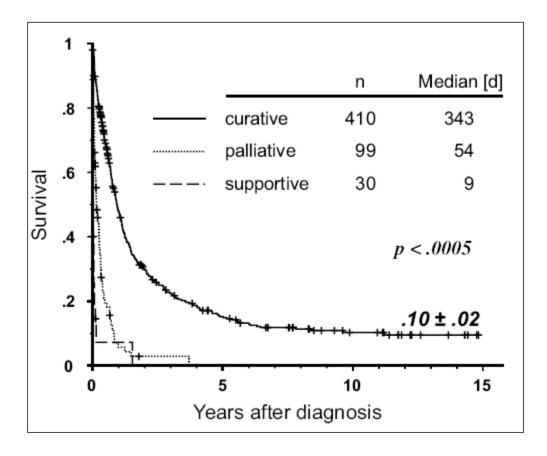
Passweg et al. BMT 2014, BMT 2018

AlloSCT for AML



CIBMTR Newsletter 2017

- Induction, consolidation and maintenance is based on all-trans retinoid acid (ATRA) given in combination (ATRA+ATO, ATRA+chemo, ATRA+ATO+GO)
- CR >90% and cure rate >80%
- ATRA induces maturation of promielocytes and prevent DIC
- Refractory/relapsed disease: arsenic trioxide (ATO)
- AlloSCT only in patients MRD+ with relapsed disease


Acute promyelocytic leukemia

- > APL t(15;17); PML/RARA gene
- Induction and consolidation based on all-trans retinoic acid (ATRA) in combination with arsenic trioxide (ATO) or anthracyclin (idarubicine)
- CR >95%

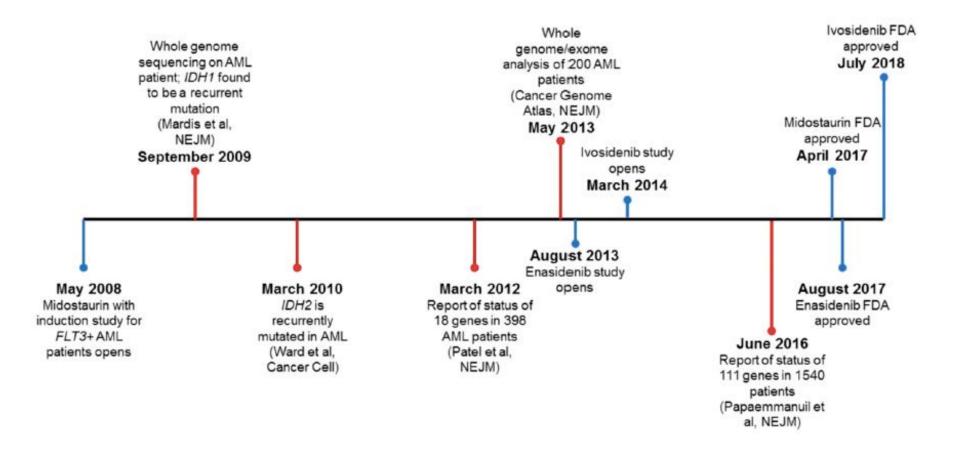
Lo-Cocco et al. NEJM 2013, Abaza et al. Blood 2017

AML in older age

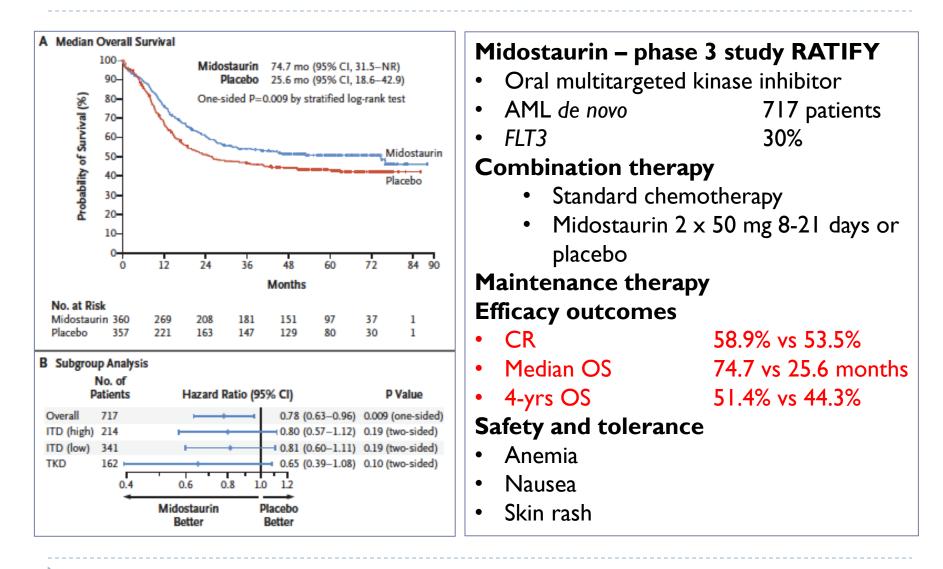
Intensive chemotherapy CR: 66,8% 2 yrs OS: 30% Risk factors performance status cytogenetics

Palliative treatment LD-AraC IDA + thioguanine Etoposide

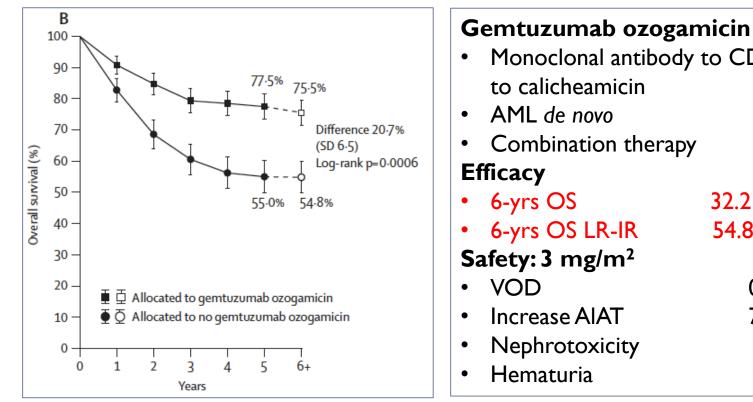
OS of AML pts >60 years according to treatment arm. AML97 OSHO Study.


Kahl et al. J Cancer Res Clin Oncol 2016

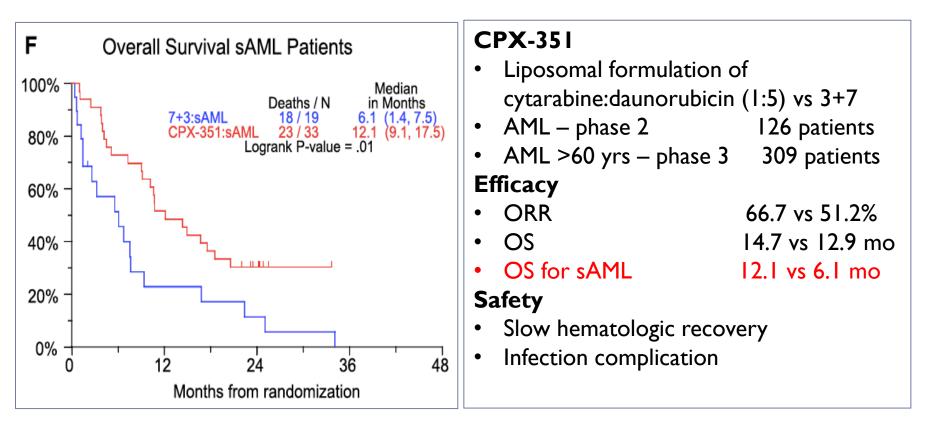
AML - therapy


Protein kinase inhibitors	 FLT3 inhibitors (midostaurin, quizartinib, gilteritinib, crenolanib) KIT inhibitors PI3K/AKT/mTOR inhibitors Aurora and polo-like kinase inhibitors, CDK4/6 		 Bcl-2, Bcl-xL, and Mcl-1 inhibitors Caseinolytic protease inhibitors Fusion transcripts targeting EVI1 targeting NPM1 targeting Hedgehog inhibitors
	inhibitors, CHK1, WEE1, and MPS1 inhibitors • SRC and HCK inhibitors	Antibodies and immunotherapies	 Monoclonal antibodies against CD33, CD44, CD47, CD123, CLEC12A
Epigenetic modulators	 New DNA methyltransferase inhibitors (SGI-110) HDAC inhibitors IDH1 and IDH2 inhibitors DOT1L inhibitors BET-bromodomain inhibitors 		 Immunoconjugates (eg, GO, SGN33A) BiTEs and DARTs CAR T cells or genetically engineered TCR T cells Immune checkpoint inhibitors (PD-1/PD-L1, CTLA-4) Anti-KIR antibody
Chemotherapeutic agents	CPX-351 Vosaroxin Nucleoside analogs	Therapies targeting AML environment	 Vaccines (eg, WT1) CXCR4 and CXCL12 antagonists Antiangiogenic therapies

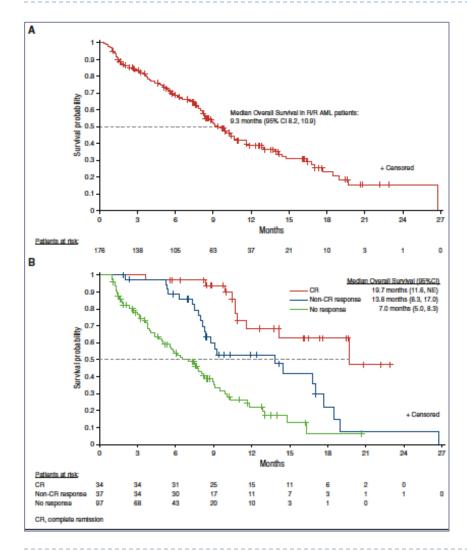
AML - therapy

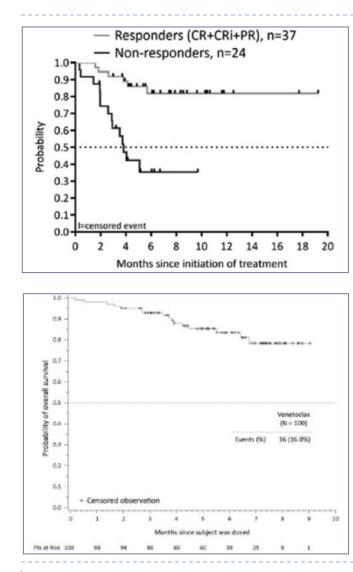

D

Midostaurin


Gemtuzumab ozogamycin

Monoclonal antibody to CD33 linked Combination therapy 32.2 vs 35.6% 54.8 vs 75.5% 0.5% 7% 1% 1%


Hills et al. Lancet Oncol 2014. Burnett et al. Heamatologica 2016


Enasidenib

D

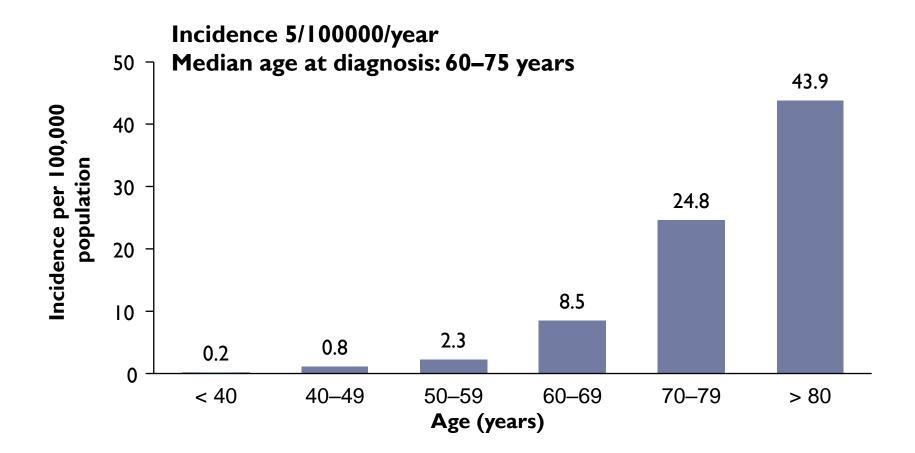
Enasidenib – phase ½ stu	
Oral selective inhibitor of	mut IDH2
enzymesAML relapsed/refractory	
• mut/DH2	12%
Dosing: 100 mg selected	
Efficacy	
ORR	40.3%
• CR	19.3%
Early response	I.9 mo
Median response duration	5.8 mo
Median OS	9.3 mo
• OS for patients with CR	19.7 mo
• I-yr OS	39%
Safety	
Hyperbilirubinemia	12%
Differentiation syndrome	7%
-	

Venetoclax

Venetoclax	
• Oral bcl-2 inhibitor	
• AML >65 yrs	
• HMA	61 patients
 LDAraC 	100 patients
Efficacy	·
HMA combination	
• ORR	68%
LDAraC combination	
• ORR	61%
Safety	
Nausea	
Diarrhoea	
Neutropenic fever	
Hypertension	

Pratz et al. Haematologica 2017 suppl. Wei al. Haematologica suppl 2017

Treatment of AML

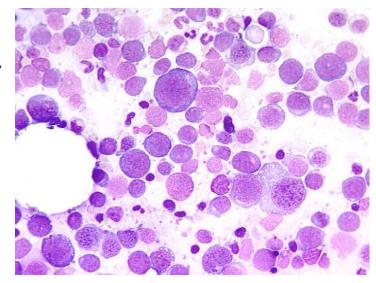

	Diagnostic group	Therapeutic options
NGS-limited/rapid panel (send full panel) Gene fusion testing (RT-PCR or FISH) FLT3-PCR Send cytogenetics Immunophenotyping	PMLRARA	? GO
	CBF fusion	7+3 ? fractionated/low dose GO ? KIT inhibitor (e.g.midostaurin or dasatinib)
	TP53 mutation	CPX-351 HMA (or novel HMA) +/- additional agents (e.g. venetoclax)
	FLT3-ITD+ or D835+	7+3 + midostaurin (especially if age ≤60) ? selective TKI (e.g. gilteritinib, crenolanib, quizartinib)
	IDH1+ or IDH2+	7+3 ? IDH inhibitor (e.g.enasidenib, ivosidenib)
	NPM1+ or CEBPa double mutation+	7+3 ? fractionated/low dose GO if no CR1 transplant planned
	t-AML or AML with MRC (if known)	CPX-351 ?additional agents depending on mutational profile (e.g. ?LSD1, DOT1L, or BET inhibitor if MLL fusion+)

Myelodysplastic syndrome (MDS)

• Group of hematological clonal diseases characterised by

- Ineffective hematopoiesis
- > Peripheral blood cytopenia
- Increased risk for AML transformation
- Blast cells in bone marrow < 20%</p>
- Heterogenous clinical picture
- Heterogenous genetic profile

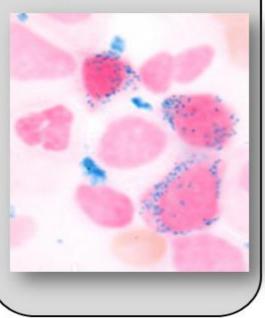
MDS incidence


MDS - diagnosis

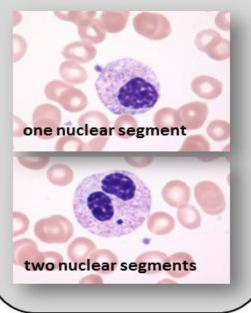
Complete blood count with differential count

- Cytopenia: anemia and/or thrombocytopenia and/or neutropenia
- Peripheral blood smear
 - Cell dysplasia

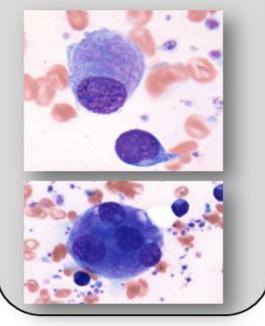
Bone marrow aspiration and biopsy


- Cell dysplasia
- ► Blast cells <20%
- Cytogenetics
- Immunophenotyping
- Screening for gene mutations

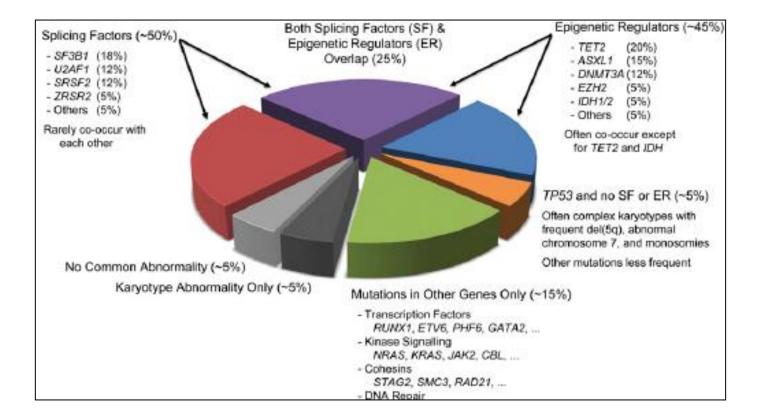
Typical Manifestations of Dysplasia in MDS


Dysplastic erythropoiesis:

Ring Sideroblasts


Dysplastic granulopoiesis:

Pseudo-PelgerAnomaly



Dysplastic megakaryocytes:

- Microforms
- Mono- binucleated forms
- Separate nuclei

Genetic abnormalities in MDS

Mutations and karyotypic abnormalities in MDS > 80%. Bejar&Steensma Blood 2014

MDS - classification

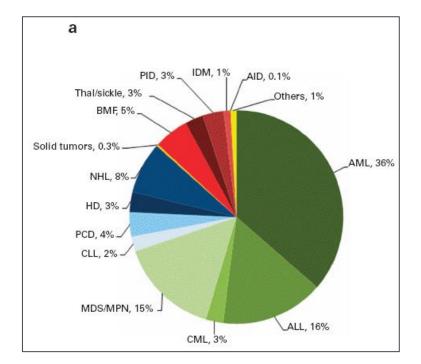
Myelodysplastic syndromes (MDS) MDS with single lineage dysplasia MDS with ring sideroblasts (MDS-RS) MDS-RS and single lineage dysplasia MDS-RS and multilineage dysplasia MDS with multilineage dysplasia MDS with excess blasts MDS with excess blasts MDS with isolated del(5q) MDS, unclassifiable

WHO. Arber et al. Blood 2016

Prognosis in MDS: IPSS-R

D

Prognostic variable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very good	_	Good	_	Intermediate	Poor	Very poor
BM blast, %	≤ 2	_	> 2%- < 5%	—	5%-10%	> 10%	—
Hemoglobin	≥ 10	_	8- < 10	< 8	_	_	_
Platelets	≥ 100	50-< 100	< 50	_	_	_	_
ANC	≥ 0.8	< 0.8	—	_	—	—	-

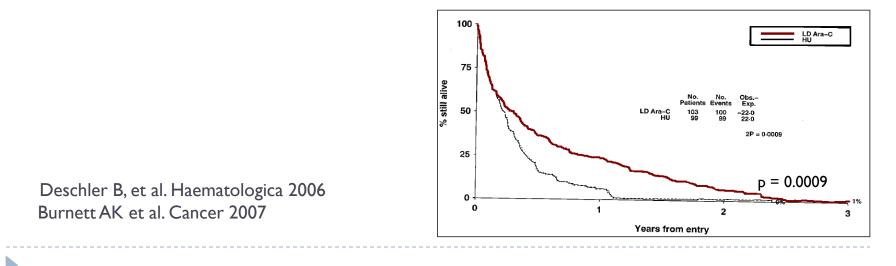

Prognostic subgroups, % of patients	Cytogenetic abnormalities
Very good (4%*/3%†)	-Y, del(11q)
Good (72%*/66%†)	Normal, del(5q), del(12p), del(20q), double including del(5q)
Intermediate (13%*/19%†)	del(7q), +8, +19, i(17q), any other single or double independent clones
Poor (4%*/5%†)	 -7, inv(3)/t(3q)/del(3q), double including -7/del(7q), complex: 3 abnormalities
Very poor (7%*/7%†)	Complex: > 3 abnormalities

Greenberg et al. Blood 2012

MDS therapy

Conventional therapies

- **Chemotherapy**
 - Intensive
 - Low-dose
- Hypomethylating agents
- Immunomodulators
- Growth factors
- Blood products transfusion
- AlloSCT curative procedure
 - RIC alloSCT
 - Age of recipients
 - Alternative donors
 - **Supportive care**



MDS – paliative therapy

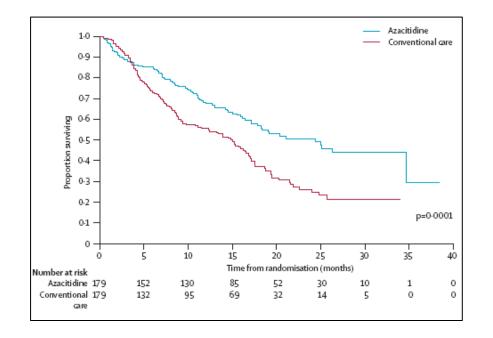
Analysis of 36 studies (12370 pts) with AML/MDS (median age 70 years)

Treatment	Survival (weeks)	
Low dose chemotherapy	12	
Supportive chemotherapy	7.5	

Median survival: LDAraC vs hydroxyurea: 4 months

Azacitidine

 5-azacitidine – analog of cytosine, DNA methylotransferase inhibitor (DNMT)

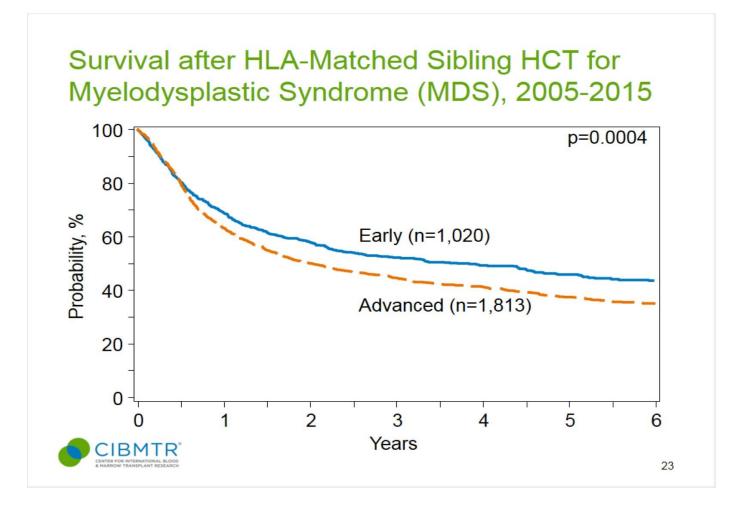

Mechanism of action

- Dose-dependent activity
- Direct cytotoxicity and apoptotic effect on malignant cells (high dose)
- DNA demethylation leading to re-expression of silenced tumor suppression genes (low dose)

Therapeutic profile

- Prolongs OS in MDS and selected AML patients
- Responses seen in high risk patients (short-lived)
- Well tolerated in comorbid and/or elderly patients

Azacitidine in MDS

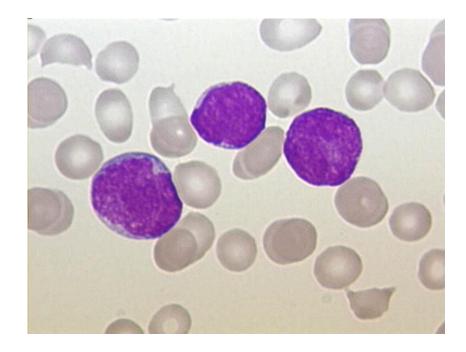

Azacitidine

prolonged survival reduced progression to AML reduced transfusion need reduced rate of infection Improvement not related to

> age blast number karyotype

AZA vs CCR. Fenaux et al. Lancet Oncol. 2009

AlloSCT w MDS


Acute lymphoblastic leukemia (ALL)

- Clonal disease of the bone marrow in which early lymphoid precursors proliferate and replace the normal hematopoietic cells
- Heterogenous disease with different biological subtypes
- ALL is the most common type of cancer and leukemia in children
- Incidence in adults
 - 0.7-1.8/100000 per year
 - <15% of acute leukemias</p>

ALL diagnosis

Diagnostic work-up

- Complet blood count with diferential
- Bone marrow aspiration and biopsy
- Immunochemistry
- Immunophenotyping
- Cytogenetics
- Molecular studies
- Gene expression profiling
- Lumbar puncture
- Chemistry profile
- Viral tests
- Coagulation of studies
- Chest X-ray
- Computed tomography
- ECG, ECHO

Morphologic subtypes of ALL (FAB classification)

<u>Subtype</u>	Morphology	Occurrence (%)
LI	Small round blasts	75
	clumped chromatin	
L2	Pleomorphic larger blasts	20
	cleafted nuclei, fine chromati	'n
L3	Large blasts, nucleoli	5
	vacuolated cytoplasm	

ALL - immunophenotyping

<u>B- lineage (80%)</u>	Markers
Pro-B	CD19(+),Tdt(+),CD10(-),Cylg(-)
Common	CD19(+),Tdt(+),CD10(+),Cylg(-)
Pre-B	CDI9(+),Tdt(+),CDI0(+),Cylg(+),Smlg(-)
Mature-B	$CDI9(+),Tdt(+),CDI0(\pm),Cylg(\pm),Smlg(+)$

T-lineage (20%)

Pre-T Mature-T

CD7(+), CD2(-), Tdt(+) CD7(+), CD2(+), Tdt(+)

I. Standard risk2. High risk3. Very high risk

Risk factors in ALL

Conventional risk factors

- Age > 35 years
- WBC > 30 G/L in B-ALL and > 100 G/L in T-ALL

Cytogenetical/moleular factors

- t(9;22)/ bcr-abl
- ▶ t(4;11)/MLL
- Hypodiploidy
- Complex abnormalities

Response to therapy

- No remission after 4 weeks of induction therapy
- Minimal residual disease (MRD)

Risk classification in ALL

Very high risk: Ph+/bcr-abl+

Treatment strategy in ALL

Remission induction therapy

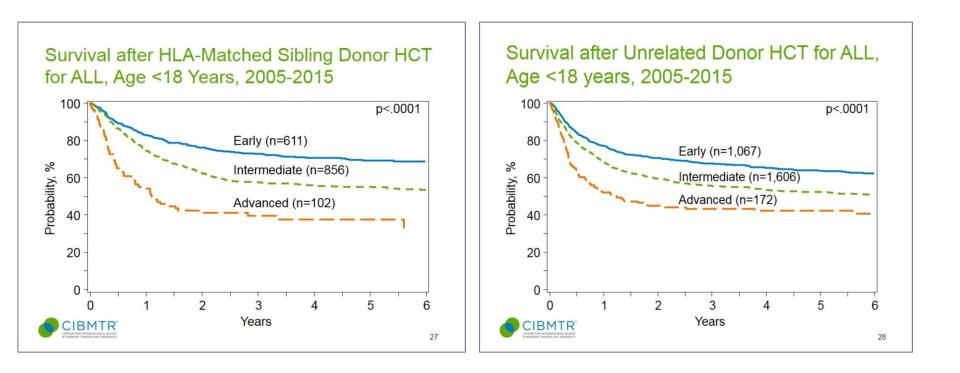
Post-remision therapy

- consolidation
- hematopoietic stem cell transplantation
- maintenance therapy
- CNS involvement prophylaxis and treatment
- Treatment of complication

Treatment strategy in ALL

Remission induction (4-8 weeks):

- prednison, vincristin, anthracyclin, L-asparaginaze, cyclophosphamid, cytarabine
- CR 70-85%


Consolidation (8-12 weeks)

- HD Ara-C, Mtx, Cyclophosphamid, L-asparginaze
- alloHSCT in high and very high risk group: LFS 51%

Maintenance

Chemotherapy 2-3 yrs: 6-meraptopurine + methotrexate

AlloSCT for ALL

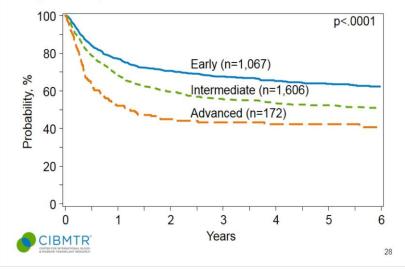
CIBMTR Newsletter 2017

• Tyrosine kinase inhibitors: imatinib, dasatinib, ponatinib

- Remission induction in combination with chemotherapy
- Maintenance after alloHSCT

CR: 95% Molecular remission: 40% - 60% DFS 2 yrs: 50% - 65%

Treatment results in ALL

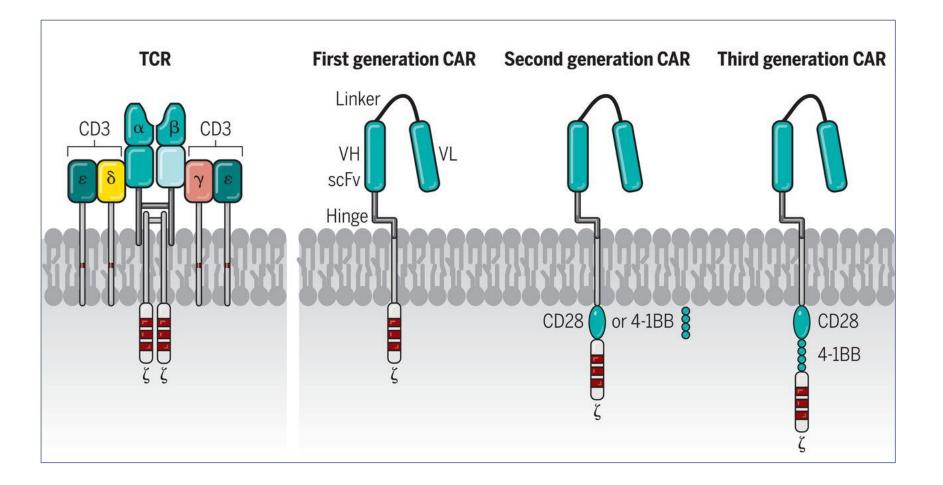

Adults

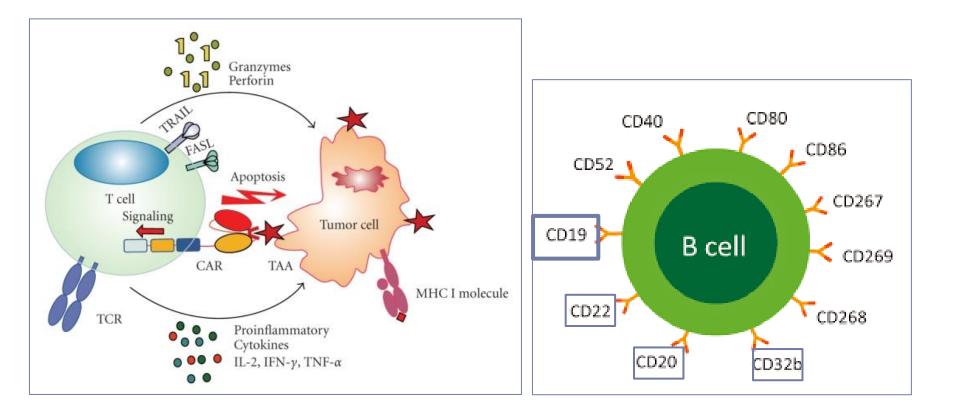
- Complete remission (CR) 80-85%
- Leukemia-free survival (LFS) 30-40%

Children

- Complete remission (CR) 95-99%
- Leukemia-free survival (LFS) 70-80%

Survival after Unrelated Donor HCT for ALL, Age <18 years, 2005-2015


New drugs and methods

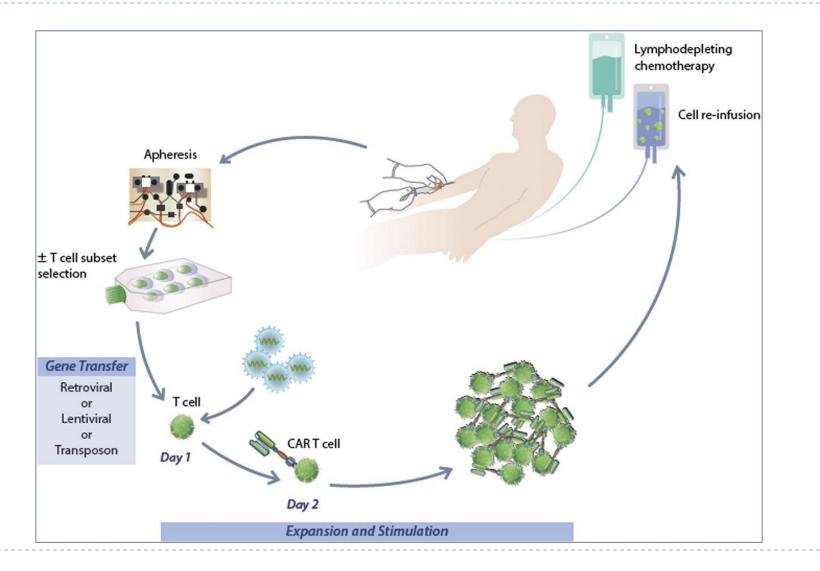

New drugs

- Tyrosine kinase inhibitors (imatinib, dasatinib)
- Farnesyl transferase inhibitor (FTI)
- Monoclonal antibodies
 - Inotuzumab
 - blinatumumab
- Chemotherapy (nelarabine, clofarabine)

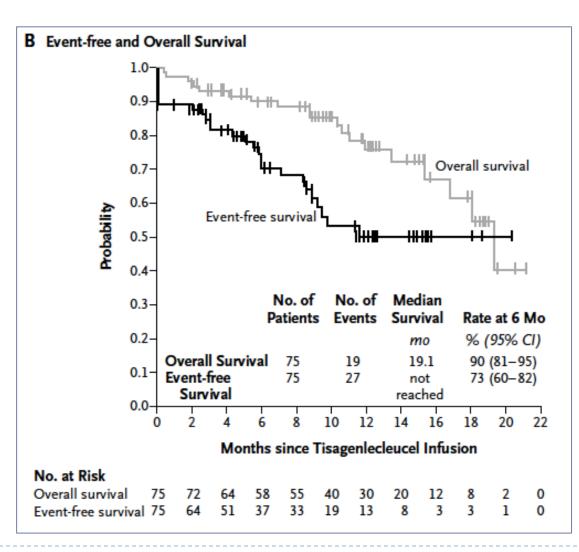
New methods

- RIC (reduced-intensity conditioning) + alloSCT
- Haploidentical
- GvL (graft versus leukemia)
- CAR-T

Cartelleri et al. J Biomed Biotechnol. 2010



Tisagenlecleucel (*Kymriah*, Novartis) is approved for use in pediatric and young adult patients (age 3 to 25 years) with B-cell ALL that is refractory or in second or later relapse (August 30,2017)


Axicabtagene ciloleucel (*Yescarta*, Kite) is approved for use in adult patients with large B-cell lymphoma after at least two other kinds of treatment failed, including DLBCL, primary mediastinal large B-cell lymphoma, high grade B-cell lymphoma and DLBCL arising from follicular lymphoma (October 18, 2017)

Mato A, Porter DL Blood 2015

New drugs and methods

Maude et al. NEJM 2018

Acute leukemias

Infection prophylaxis

- enviromental
- pharmacological

Infection treatment

- empirical antibiotic therapy
- Blood products transfusion
- TPN
- Psychological support